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Hans R. Kricheldorf 1, DeUef MOiler 2 and Hans F6rster 2 

Institut for angewandte Chemie der Universit~t, Martin-Luther-King-Platz 6, 
D-2000 Hamburg 13, Federal Republic of Germany 

2 Bruker, Analytische Megtechnik GmbH, Silberstreifen, D-7512 Rheinstetten/Fo., 
Federal Republic of Germany 

S UHMAR Y 

75.4 MHz 15C NHR CP/MAS spectra allowed the quantification 
of the secondary structure of (KOMe-L-GIu)~ and (yOBzl-L-Glu)n. 
( OHe-L-Glu)n contains ~-helix hnd B-sheet-structhres the ratio 
of which varxes considerably with the average degree of polyme- 
rization (D-P) of the samples and with the nature of the reac- 
tion medium. At D-P's ~20 (gOBzl-L-GlU)n contains more than 95% 
~-helix structure regardless of DP and-reaction medium. The 
difference between both polyglutamates is explained by diffe- 
rent molecular weight distributions resulting from aggregation 
and precipitation of oligo (lOMe-L-GlU)n in the B-sheet form. 

0 

INTRODUCTION 

S e c o n d a r y  s t r u c t u r e  and  o t h e r  p r o p e r t i e s  o f  ( ~ O H e - L - G l U ) n  

i n  s o l u t i o n  h a v e  b e e n  t h e  o b j e c t  o f  n u m e r o u s  i n v e s t i g a t i o n s .  

However~ t o  t h e  b e s t  o f  o u r  k n o w l e d g e  t h e  i n f l u e n c e  o f  t h e  

r e a c t i o n  c o n d i t i o n s  o f  NCA p o l y ( g l u t a m a t e s )  h a s  n e v e r  b e e n  

i n v e s t i g a t e d .  B e c a u s e  we c o u l d  d e m o n s t r a t e  t h a t  15C NMR CP/HAS 

a l l o w  b o t h  a q u a l i t a t i v e  and  a q u a n t i t a t i v e  a n a l y s i s  os t h e  

s e c o n d a r y  s t r u c t u r e  o f  a l m o s t  a l l  p o l y p e p t i d e s  1 - 4 )  t h i s  me-  

t h o d  was p r e f e r e n t i a l l y  u s e d  i n  t h e  p r e s e n t  w o r k .  

RESULTS and DISCUSSION 

The signal assignments of the 15C NMR/HAS spectra os both 

([OHe-L-GlU)n and(~OBzl-L-Gln)n were reported previously 2) 

Only peptide-CO~ ~-C and B-C signals are sensitive to the na- 

ture of the secondary structure. Because the side chain CO- 

signal (y) overlaps with the B-sheet peak of the peptide CO- 

signal (x) and the CH 3 signal (d) with the B-sheet peak of the 
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~-C signal (a, Fig. I A-C), the G-helix content of (~OMe- 

L-GlU)n must be calculated from equation I: 

I h_ �9 100 
% ~-helix = (I) 

1 
2 (Io,h + I t )  

I h = intensity of an ~-helix main chain signal 

I t = total intensity of an overlapping side chain signal + 

a 6-sheet main chain signal 

In the case of (~OBzI-L-GIu) n the Q-helix content is easily 

and more accurately determinable from the ~lh and Bs peaks of 

the ~-C-signal which do not overlap with other signals (Fig.2). 

In order to obtain correct intensity ratios repetition ti- 

me and contact time were optimized. As optimum repetition ti- 

me a value of 4s was found in agreement with other polypepti- 

des 1). Optimum contact times are 0.6 - 0.8 ms for (~OMe-L- 

GlU)n and 0.8 - 1.0 ms for (~OBzI-L-GIu) n. These reIatively 

short contact times were chosen for two reasons. First, the 

spin-lock proton relaxation times (TI~) of both poly(gluta- 

mates) are shorter than those of other polypeptides (4-16 ms). 

Second, the Tl~'S of side chain and main chain protons of 

(~OMe-L-GlU)n differ largely. A more detailed discussion of 

these measurements will be published separately. 

NCA . % conversion 
DP = (2) 

In �9 100 

Most polymerizations o f  ~OMe-L-Glu-NCA and ~OBzI-L-GIu-NCA 

were initiated by primary amines, because such polymerizations 

have a living character for ~ ratios ~100. So that the  Fcan 
I 

be varied and calculated according to equation (2). Samples 

Nos. 1-5, Table I, demonstrate that the ~h/Rs ratio increases 

with increasing D-~ in analogy with poly(L-alanine) I) and 

poly(L-leucine) 4) (Fig. I A, B)- Nevertheless, the ~-heIix 

percentage of the (~OMe-L-GIu) n samples are substantially lo- 

wer than those of (L-Ala)n or (L-Leu)n prepared under identical 
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conditions. Interestingly, they are very similar to those of 

4) a polypeptide which also possesses an poly(D-norvaline) n 

unbranched aliphatic side chain. ~hen the solvent was varied~ 

the ~-helix content also varied considerably (Nos. 2,4~5~6)~ 

whereas the DP remained unchanged. Such a sensitivity of the 

~-helix/~-sheet ratio was never found in the case of (L-AIa) n. 

The solvent effects on the secondary structure of ( ~ 0Me-L-GIu) n 

results mainly from a better or poorer solvation of the rela- 

tively long polar side chain which influences the solubility 

of the oligomers. 01igomers with DP's-~I5 ~ 1 5~6) cannot 

adopt the ~-helix conformation and precipitate from aprotic 

solvents forming antiparallel B-sheets. Due to steric hindrance 

the chain growth of the B~sheets is significantly slower than 

that of helical chains~ so that at least a bimodal molecular 

weight distribution must result consistinf of oligomers of 

DP~15 • I and helical chains with DP ~15 ~ 1. 

This hypothesis is supported by the following observations. 

For (L-Ala)n and (L-LeU)n a similar behavior was found~ and ex- 

perimental evidence for the bimodal MI~D was obtained by extrac- 

tion of the oligomers 5,4) It is also known 7,8) that the chain 

growth of polypeptides which cannot form ~-helices (e.g. Val~ 

Ile~ Ser~ Cys) is much slower and yields lower DPs than polyme- 

rizations of oL-helix forming NCAs. However~ in contrast to 

(L-Ala)n and ( ~ 0BzI-L-GIu) n the q-h/Bs ratio of (~ OMe-L-GlU)n 

is not in all cases thermodynamically controlled. After repreci- 

pitation from trifluoroacetic acid/diethylether the c~-helix 

content of samples Nos~ i-6 (Tab~I) was 20-50 % higher, but re- 

mained constant upon repeated reprecipitation. Obviously~ a part 

of the original B-sheets contains chains that are long enough 

to form ~-helices. Hence~ their formation was kinetically con- 

t r o l l e d ~  w h e r e a s  t h e  s h o r t e r  o l i g o m e r s  (DPs ~ 1 5  ! 1) a r e  r e -  

s p o n s i b l e  f o r  t h e  t h e r m o d y n a m i c a l l y  s t a b l e  B - s h e e t s .  The l a t t e r  

f i n d i n g  c o n t r a s t s  s h a r p l y  ~ i t h  t h e  c r y s t a l  g r o w t h  h y p o t h e s i s  o f  

Komoto and  Rawa i  9 ~ 1 0 ) .  h more  d e t a i l e d  i n v e s t i g a t i o n  and  a b r o a -  

d e r  d i s c u s s i o n  o f  k i n e t i c a l l y  c o n t r o l l e d  s e c o n d a r y  s t r u c t u r e s  

w i l l  be  p r e s e n t e d  i n  P a r t s  7 and  11 o f  t h i s  s e r i e s .  
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As a consequence of the results and hypotheses discussed abo- 

vesit is expected that any measure that prevents the early pre- 

cipitation of oligo (~O~e-L-Glu) must yield samples of nearly 

I00 % helicity. Such a measure is the use of monoamino polyethy- 

leneoxide as initiator s because PEO is known to solubilize all 

kinds of oligopeptides 5st1). The result of our experiment 

(No.11,Table I) confirms this expectation. Nearly I00 % helici- 

ty was also obtained with tertiary amines (Nos. 8-10) (Fig. IC). 

Tertiary amines initiate only a few chains simultaneously and 

the propagation is faster than the initiation in contrast to 

(aliphatic) primary amine-initiated polymerizations 7) Hences 

the actual concentration of oligomers is extremely low and the 

formation of high molecular weight polypeptides is favoured 12) 

F i n a l l y ,  we have  p o l y m e r i z e d  ~OBzl -L-Glu-NCA i n  a v a r i e t y  

o f  s o l v e n t s  ( T a b l e  I I ) .  A l l  s a m p l e s  h a v i n g  DPs ~ 2 0  c o n t a i n  90-  

100 % d - h e l i x  s t r u c t u r e ,  and t h e  L - s h e e t  p e a k  o f  t h e  g - C - s i g -  

n a l s  i s  c l e a r l y  d e t e c t a b l e  o n l y  f o r  D P ' s  10 ( F i g . 2 ) .  Thus s t h e  

two GIu-NCAs behave quite differently and again the solubility 

of the oligomers (and polymers) is the key to a correct inter- 

pretation. Whereas all polymerizations of ~OMe-L-GIu-NCA showed 

a heterogeneous course s we never could observe precipitation of 

oligomeric (~OBzl-L-Glu) n from the reaction mixtures. This ob- 

servation agrees well with the good solubility of (~OBzl-L-Glu) n 

in most organic solvents which is the main reason for the nume- 

rous physicochemical investigations of this polypeptide. When a 

Poisson molecular weight distribution is considered~ as is ex- 

pected for a living polymer in homogeneous solution s (the ex- 

perimental data found in dioxane slightly deviate from this 

simplified consideration 15), the ca.20 % ~-helix content found 

at DP = I0 (Nos. 1,4 s Fable II) suggests that the coil--+helix 

transition took place at DP = 8 5). This suggestion is in excel- 

lent agreement with literature data 15-15) derived from oligo 

(~OBzl-L-Glu) prepared b~ stepwise syntheses. Thus s it is a 

logical consequence that a polymerization nf ~OMe-L-GIu-NCA 

initiated with oligomeric ( ~ OBzl-L-GlU)n (No.12 s Table I) leads 

to a higher ~-helix content than a benzylamine-initiated poly- 

merization under similar conditions (No.5 s Table I). In other 
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d 
d + a~s) 

O'CH3 
I 

y CO 
I 

C CH2 a c+b(~s) 
y+-x(~s,) blCH2 
: -NH-CH-  C:-  " 

x,/~h) a(~) 

x(~hl y a(~xh) I i  d 

(ppm) 200 150 100 50 0 

Fig. 1: 50.5  MtIz 13C NMR CP/MAS s p e c t r a  os (~0Me-L-Glu) n 

A) Sample No. 1, Table l ;  B) Sample No. 2, Table  I 

C) Sample No. 10, Table I .  

words ,  o l i g o m e r i c  ( ~ OBzl-L-GlU)n can se rve  as oC-he l ix  i n~u-  

c ing  i n i t i a t o r  f o r  o t h e r  NCAs. 
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Table II.Results of isopropylamine-initiated polymerizations of 

~OBzl-L-GlU)n in various solvents at 25~ 

Mon Time Yield ~-Helix 
No ~ Solvent ~c) 

In ( d )  (%) (%) 

~1 10 :1  E t h y l a c e t a t e  2 93 a)  7 5 -  80 10 ~ 1 

2 2 0 : 1  E t h y i a c e t a t e  2 95 a)  9 0 -  95 18 Z 1 

3 5 0 : 1  E t h y l a c e t a t e  4 94 a)  9 7 - 1 0 0  47 • 2 

4 1 0 : 1  D i o x a n e  2 94 b) 8 0 -  85 9 ~ 1 

5 2 0 : 1  D i o x a n e  2 97 b) 97 -100  20 ~ 2 

6 2 0 : 1  M e t h y l e n e c h l o r i d e  2 98 a)  9 7 - 1 0 0  20 ~ 2 

7 2 0 : 1  D i m e t h y l f o r m a m i d e  2 94 b) 9 7 - 1 0 0  19 ~ 2 

a)  p r e c i p i t a t e d  i n t o  c o l d  d i e t h y l e t h e r  

b) p r e c i p i t a t e d  i n t o  c o l d  w a t e r  (pH2) 

c)  1H NMR e n d g r o u p  a n a l y s e s  o f  i s o p r o p y l a m i d e  CH 3 s i g n a l s  

d C a z - O  

0 e x{~,h) 
I 

Y CO 
I 

c ~H z 

-N H-CH-C-O- 
a x ss 

(PF~)  ,: ',. 
200 

~h 
\ 

c b  

s'o 

F i g . 2  7 5 . 4  Mtlz 13C NMR CP/MAS s p e c t r u m  o f  ( ~ 0 B z l -  

L - G l U ) n  ~ No. i v T a b l e  I I  
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EXPERI MEN TAL 

Syntheses and polymerizations of ~ OMe-L-Glu-NCA and ~ OBzl- 

L-GIu-NCA were conducted as described for Ala- and Leu-NCA pre- 

viously 5~4). The NMR measurements were also performed as des- 

cribed previously 2) 
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